Hierarchical (Agglomerative) Clustering via stats
Source:R/hier_clust_stats.R
details_hier_clust_stats.Rd
hier_clust()
creates Hierarchical (Agglomerative) Clustering model.
Details
For this engine, there is a single mode: partition
Tuning Parameters
This model has 1 tuning parameters:
num_clusters
: # Clusters (type: integer, default: no default)
Translation from tidyclust to the original package (partition)
hier_clust(num_clusters = integer(1)) %>%
set_engine("stats") %>%
set_mode("partition") %>%
translate_tidyclust()
## Hierarchical Clustering Specification (partition)
##
## Main Arguments:
## num_clusters = integer(1)
## linkage_method = complete
##
## Computational engine: stats
##
## Model fit template:
## tidyclust::.hier_clust_fit_stats(data = missing_arg(), num_clusters = integer(1),
## linkage_method = "complete")
Preprocessing requirements
Factor/categorical predictors need to be converted to numeric values
(e.g., dummy or indicator variables) for this engine. When using the
formula method via fit()
, tidyclust
will convert factor columns to indicators.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language. Wadsworth & Brooks/Cole. (S version.)
Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.
Hartigan, J.A. (1975). Clustering Algorithms. New York: Wiley.
Sneath, P. H. A. and R. R. Sokal (1973). Numerical Taxonomy. San Francisco: Freeman.
Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.
Gordon, A. D. (1999). Classification. Second Edition. London: Chapman and Hall / CRC
Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, in COMPSTAT Lectures 4. Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).
McQuitty, L.L. (1966). Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data. Educational and Psychological Measurement, 26, 825–831. doi:10.1177/001316446602600402.
Legendre, P. and L. Legendre (2012). Numerical Ecology, 3rd English ed. Amsterdam: Elsevier Science BV.
Murtagh, Fionn and Legendre, Pierre (2014). Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? Journal of Classification, 31, 274–295. doi:10.1007/s00357-014-9161-z.