augment()
will add column(s) for predictions to the given data.
Usage
# S3 method for cluster_fit
augment(x, new_data, ...)
Arguments
- x
A
cluster_fit
object produced byfit.cluster_spec()
orfit_xy.cluster_spec()
.- new_data
A data frame or matrix.
- ...
Not currently used.
Value
A tibble::tibble()
with containing new_data
with columns added
depending on the mode of the model.
Examples
kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")
kmeans_fit <- fit(kmeans_spec, ~., mtcars)
kmeans_fit %>%
augment(new_data = mtcars)
#> # A tibble: 32 × 12
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
#> # ℹ 1 more variable: .pred_cluster <fct>