k_means()
creates K-prototypes model. A K-prototypes is the middle ground
between a K-means and K-modes model, in the sense that it can be used with
data that contains both numeric and categorical predictors.
Details
Both numeric and categorical predictors are requires for this engine.
For this engine, there is a single mode: partition
Tuning Parameters
This model has 1 tuning parameters:
num_clusters
: # Clusters (type: integer, default: no default)
Translation from tidyclust to the original package (partition)
k_means(num_clusters = integer(1)) %>%
set_engine("clustMixType") %>%
set_mode("partition") %>%
translate_tidyclust()
## K Means Cluster Specification (partition)
##
## Main Arguments:
## num_clusters = integer(1)
##
## Computational engine: clustMixType
##
## Model fit template:
## tidyclust::.k_means_fit_clustMixType(x = missing_arg(), k = missing_arg(),
## keep.data = missing_arg(), k = integer(1), keep.data = TRUE,
## verbose = FALSE)
References
Szepannek, G. (2018): clustMixType: User-Friendly Clustering of Mixed-Type Data in R, The R Journal 10/2, 200-208, doi:10.32614/RJ-2018-048.
Aschenbruck, R., Szepannek, G., Wilhelm, A. (2022): Imputation Strategies for Clustering Mixed‑Type Data with Missing Values, Journal of Classification, doi:10.1007/s00357-022-09422-y.
Z.Huang (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Variables, Data Mining and Knowledge Discovery 2, 283-304.