Calculates Sum of Squared Error in each cluster
Usage
sse_within(object, new_data = NULL, dist_fun = Rfast::dista)
Arguments
- object
A fitted kmeans tidyclust model
- new_data
A dataset to predict on. If
NULL
, uses trained clustering.- dist_fun
A function for calculating distances to centroids. Defaults to Euclidean distance on processed data.
Details
sse_within_total()
is the corresponding cluster metric function
that returns the sum of the values given by sse_within()
.
Examples
kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")
kmeans_fit <- fit(kmeans_spec, ~., mtcars)
sse_within(kmeans_fit)
#> # A tibble: 5 × 3
#> .cluster wss n_members
#> <fct> <dbl> <int>
#> 1 Cluster_1 7256. 6
#> 2 Cluster_2 3617. 7
#> 3 Cluster_3 6356. 6
#> 4 Cluster_4 46659. 9
#> 5 Cluster_5 208. 4